
Going fast with GO

Brasília DF, 01 Agosto 2019

Rafael Passos

CS Researcher - UnB/IFB

GO Evangelist

Introduction
SECTION ONE

For whom is the Go programming Language ?

- Suitable for anyone, from beginners to
experienced programmers.

Why?
- Easy to learn, and become productive
- Concepts are easy to understand

 - Type and Memory Safe, Enforces Code Quality
 - Modern Toolchain, fun to write!

For what Go should be used ?

- Micro Services, Web, Networking,
Infrastructure, CLIs, Data Science, Cloud
Computing, Cross Platform Apps

Why ? Built for the Cloud
Easy to maintain
Stable Syntax since 1.0 (2012)
Resource efficient and high performance

 Supported by big companies (e.g. Google)

HOW IT RUNS

- Compiled to machine code: 32 e 64-bit
x86, ARM, RISC-V, WebAsm…

- Cross Platform: Linux, Windows, Mac,
Browser, IOS, Android, Arduino and other
Microcontrollers (tinygo) …

- Cross Compilation (for any OS/Arch)

CODE QUALITY AS A MAIN CONCERN

- Statically Typed: zero variable type related
runtime errors

- Garbage Collected: safe for any programmer

- Born with fixed Code Styling and Formatting
Tools (GO fmt)

- Powerful Tests and Benchmarks are built into
the language

Language Design
Authors:
 Rob Pike (Bell Labs Plan 9 OS, Unix)
 Ken Thompson (C Language, Unix, UTF-8)
 Robert Griesemer (Java HotSpot, V8 JS Engine)

SECTION TWO

GO VALUES

Thoughtful Deliberate and considerate.

Simple Clear and precise.

Efficient Do more with less.

Reliable It just works.

Productive Realize your vision, faster.

Friendly Accessible and welcoming.

Source : Official GO Brand Book v1.0 https://blog.golang.org/go-brand

{
DESIGN PRINCIPLES

Simplicity

All features
should be easy
to understand

{
DESIGN PRINCIPLES

Orthogonality

All features
should interact
in predictable
and consistent
ways.

{
DESIGN PRINCIPLES

Legibility

- Simple understanding
without over verbosity

- Built with concepts familiar
to any C or Java Developer

Dependencies
Management

packages & modules

SECTION TREE

Go packages

package main

import (

 "bytes"

 "context"

 "fmt"

 "log"

 "math/rand"

 "producer/db" // pacote interno

 "github.com/google/uuid"

 kafka "github.com/segmentio/kafka-go"

)

Always know where your dependencies come from

Packages are
imported using
the repository
URL

Go Modules

module kafka_producer

go 1.12

require (

 github.com/google/uuid v1.1.1

 github.com/segmentio/kafka-go v0.3.0

)

)

Arquivo de dependencias go.mod

Sem-Ver based
on repositories
releases

Want a specific
commit?
Commit Hash !

module rabbitmq_producer

go 1.12

require (

 github.com/streadway/amqp v0.0.0-20190404075320...

)

TOOLING

 A Modern and Powerful language should
have Modern and Powerful tools

SECTION FOUR

Go fmt

package main

import ("log")

func main(){helloMessage:="Hello Go"

log.Println(helloMessage)}

$ go fmt test.go

package main

import (

 "log"

)

func main() {

 helloMessage := "Hello Go"

 log.Println(helloMessage)

}

GO code looks familiar wherever you GO

Auto code
formatting
directly from
the toolchain

GO GET GO RUN GO BUILD GO INSTALL

Want a library ?

go get github.com/google/uuid

go get github.com/google/uuid@latest

go get github.com/google/uuid@v1.1.0

GO GET GO RUN GO BUILD GO INSTALL

Want to run with
 one command ?

go run hello.go

GO GET GO RUN GO BUILD GO INSTALL

Want to build your app?
go build app.go

Want to Cross Compile ?

GOOS=windows GOARCH=amd64 go build app.go

GOOS=linux GOARCH=arm go build app.go

gomobile build -target=android app.go

GO GET GO RUN GO BUILD GO INSTALL
Want a tool in your path ?

go install github.com/uber/kraken

Binary goes to:
- $GOPATH/bin/kraken

In my case: /home/auyer/go/bin/kraken

Or

- /usr/local/bin/kraken If GOBIN=/usr/local/bin/

Note: “Kraken” is a fast P2P Docker Registry by Uber (Apache-2.0 License)

goimports

package main

import (
 "fmt" // fmt unused, will be removed

// log needed, will be added
/* github.com/streadway/amqp needed,

will be added if found in your system,
error if not recognized

*/
)

func main() {
 url := "ampq://ampq.local"

conn, err := amqp.Dial(url)
if err != nil {

log.Fatalf("cannot dial: %v: %q", err, url)
}

conn.Close()
}

Automatic
insertion and
removal of
imported
libraries

CODE QUALITY CHECK WITH Go Report Card

go get github.com/gojp/goreportcard

goreportcard-cli -v

Grade: A+ (99.9%)
Files: 332
Issues: 2
gofmt: 100%
go_vet: 100%
gocyclo: 99%
gocyclo download/download.go:22
 warning: cyclomatic complexity 17 of function
download() is high (> 15) (gocyclo)

golint: 100%
ineffassign: 100%
license: 100%
misspell: 100%

Run several
static check
tools to keep
your code in
good shape!
Web Version :
https://goreportcard.com/

Go test

package pow

import (
 "math"
 "testing"
)

func TestMathPow(t *testing.T) {
 res := math.Pow(2, 2)
 if res != 4 {
 t.Fail()
 }
}

func BenchmarkHandler(b *testing.B) {
 for n := 0; n < b.N; n++ {
 math.Pow(2, float64(n))
 }
}

BenchmarkPow 20000000 113 ns/op 0 B/op 0 allocs/op

go test .

go test -race .

go test -bench .

Test files should be in the same package of the functions, and are called package_test.go

Features
SECTION FIVE

{
SCALABLE MULTI-CORE PROCESSING

Concurrency
with

Goroutines

- Lightweight,
- Scalable,
- Simpler

Than
Threads!

go doSomething()

Communication between goroutines

package main

import ("fmt")

func helloName(name string, resultsChannel chan string) {

 resultsChannel <- "Hello " + name + " !"

}

func main() {

 channel := make(chan string)

 go helloName("Gopher", channel)

 result := <-channel

 fmt.Println(result)

}

https://play.golang.com/p/BmLWIGDNwfC

 ‘Read-exactly-once’ communication channels

“Do not
communicate by
sharing memory;
instead, share
memory by
communicating.”

- Rob Pike

How many lines make a HTTP server?

package main

import (
"fmt"
"log"
"net/http"

)

func função_olá(w http.ResponseWriter, req *http.Request) {
fmt.Fprintf(w, "Olá !")

}

func main() {
http.HandleFunc("/", função_olá)
err := http.ListenAndServe("localhost:8080", nil)
if err != nil {

log.Fatal(err)
}

}

Concurrent and
Non-Blocking !

Production
Ready with
stdlib only

https://play.golang.org/p/G5v-OgjUbix

ABSTRACTION THROUGH INTERFACES

type geometry interface {
 area() float64
 perim() float64
}

type rect struct {
 width, height float64
}

func (r rect) area() float64 {
 return r.width * r.height
}

func (r rect) perim() float64 {
 return 2*r.width + 2*r.height
}

func measure(g geometry) string {
 return fmt.Sprintf("Area: %f, Perim: %f", g.area(), g.perim())
}

You can define methods on any type/struct:

Interfaces are
collections of
method
signatures.

Source:
https://gobyexample.com/interfaces

Who uses it ?
SECTION SIX

Notable Companies Using GO

Adobe, Alibaba, AT&T, Atlassian, Booking.com, Cannonical,
Cabify, CircleCI, Cloudflare, Comcast, Dell, Digital Ocean,
Dropbox, Facebook, Google, IBM, Intel, Microsoft, Mozilla,
PayPal, Pivotal, Twitter, Uber, SpaceX...

What about Brazil ?

99, MercadoLivre, Catho,C6 Banck, Dafiti, Elo 7, Globo.com,
LEVEE, Loggi, Hotel Urbano, Viva Real, Magazine Luiza, Nic.br,
Rede Bandeirantes, PagSeguro, PMMG, Quinto Andar,
SiBBr.gov.br, SumUp, TOTVS, Vórtx, Wallmart Brasil ...
Fontes: https://github.com/golang/go/wiki/GoUsers e https://www.meetup.com/golangbr

https://github.com/golang/go/wiki/GoUsers
https://www.meetup.com/golangbr

Ferramenta

03. REAL WORLD GO

Synthesis

Efficient, reliable, scalable, simple.

Easy to learn. Familiar Concepts.

Code Quality at its core

Strict rules = Easy to maintain

High performance with low footprint

It's growing, and it's not going away.

#
#

TIME FOR A CHALLENGE

Thank you for
your time

Brasília DF, 01 Agosto 2019

Rafael Passos

CS Researcher - UnB/IFB

GO Evangelist

